skip to main content


Search for: All records

Creators/Authors contains: "Heimbach, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface. 
    more » « less
  2. null (Ed.)
  3. We present a new capability of the ice sheet model SICOPOLIS that enables flexible adjoint code generation via source transformation using the open-source algorithmic differentiation (AD) tool OpenAD. The adjoint code enables efficient calculation of sensitivities of a scalar-valued objective function or quantity of interest (QoI) to a range of important, often spatially varying model input variables, including initial and boundary conditions, as well as model parameters. Compared to earlier work on adjoint code generation of SICOPOLIS, our work is based on several important advances: (i) it is embedded within the up-to-date trunk of the SICOPOLIS repository – accounting for one and a half decades of code development and improvements – and is readily available to the wider community; (ii) the AD tool used, OpenAD, is an open-source tool; (iii) the adjoint code developed is applicable to both Greenland and Antarctica, including grounded ice as well as floating ice shelves, and with an extended choice of thermodynamical representations. A number of code refactorization steps were required. They are discussed in detail in an Appendix as they hold lessons for application of AD to legacy codes at large. As an example application, we examine the sensitivity of the total Antarctic Ice Sheet volume to changes in initial ice thickness, summer precipitation, and basal and surface temperatures across the ice sheet. Simulations of Antarctica with floating ice shelves show that over 100 years of simulation the sensitivity of total ice sheet volume to the initial ice thickness and precipitation is almost uniformly positive, while the sensitivities to surface and basal temperature are almost uniformly negative. Sensitivity to summer precipitation is largest on floating ice shelves from Queen Maud to Queen Mary Land. The largest sensitivity to initial ice thickness is at outlet glaciers around Antarctica. Comparison between total ice sheet volume sensitivities to surface and basal temperature shows that surface temperature sensitivities are higher broadly across the floating ice shelves, while basal temperature sensitivities are highest at the grounding lines of floating ice shelves and outlet glaciers. A uniformly perturbed region of East Antarctica reveals that, among the four control variables tested here, total ice sheet volume is most sensitive to variations in summer precipitation as formulated in SICOPOLIS. Comparison between adjoint- and finite-difference-derived sensitivities shows good agreement, lending confidence that the AD tool is producing correct adjoint code. The new modeling infrastructure is freely available at www.sicopolis.net under the development trunk. 
    more » « less
  4. Abstract

    A number of feedbacks regulate the response of Arctic sea ice to local atmospheric warming. Using a realistic coupled ocean‐sea ice model and its adjoint, we isolate a mechanism by which significant ice growth at the end of the melt season may occur as a lagged response to Arctic atmospheric warming. A series of perturbation simulations informed by adjoint model‐derived sensitivity patterns reveal the enhanced ice growth to be accompanied by a reduction of snow thickness on the ice pack. Detailed analysis of ocean‐ice‐snow heat budgets confirms the essential role of the reduced snow thickness for persistence and delayed overshoot of ice growth. The underlying mechanism is a snow‐melt‐conductivity feedback, wherein atmosphere‐driven snow melt leads to a larger conductive ocean heat loss through the overlying ice layer. Our results highlight the need for accurate observations of snow thickness to constrain climate models and to initialize sea ice forecasts.

     
    more » « less
  5. Abstract

    Oceanic quantities of interest (QoIs), for example, ocean heat content or transports, are often inaccessible to direct observation, due to the high cost of instrument deployment and logistical challenges. Therefore, oceanographers seek proxies for undersampled or unobserved QoIs. Conventionally, proxy potential is assessed via statistical correlations, which measure covariability without establishing causality. This paper introduces an alternative method: quantifying dynamical proxy potential. Using an adjoint model, this method unambiguously identifies the physical origins of covariability. A North Atlantic case study illustrates our method within the ECCO (Estimating the Circulation and Climate of the Ocean) state estimation framework. We find that wind forcing along the eastern and northern boundaries of the Atlantic drives a basin‐wide response in North Atlantic circulation and temperature. Due to these large‐scale teleconnections, a single subsurface temperature observation in the Irminger Sea informs heat transport across the remote Iceland‐Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy potential allows two equivalent interpretations: Irminger Sea subsurface temperature (i) shares 19% of its adjustment physics with ISR heat transport and (ii) reduces the uncertainty in ISR heat transport by 19% (independent of the measured temperature value), if the Irminger Sea observation is added without noise to the ECCO state estimate. With its two interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dynamics and (ii) uncertainty quantification and optimal observing system design, the latter being an emerging branch in computational science. The new method may therefore foster dynamics‐based, quantitative ocean observing system design in the coming years.

     
    more » « less